Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Biochem Biophys Res Commun ; 626: 66-71, 2022 10 20.
Article in English | MEDLINE | ID: covidwho-1966379

ABSTRACT

Increasing evidence suggests incomplete recovery of COVID-19 patients, who continue to suffer from cardiovascular diseases, including cerebral vascular disorders (CVD) and neurological symptoms. Recent findings indicate that some of the damaging effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, especially in the brain, may be induced by the spike protein, leading to the disruption of the initial blood-brain barrier (BBB). SARS-CoV-2-infected cells and animals exhibit age-dependent pathogenesis. In this study, we identified endothelial BACE1 as a critical mediator of BBB disruption and cellular senescence induced by the SARS-CoV-2 spike S1 subunit protein. Increased BACE1 in human brain microvascular endothelial cells (HBMVEC) decreases the levels of tight junction proteins, including ZO-1, occludin, and claudins. Moreover, BACE1 overexpression leads to the accumulation of p16 and p21, typical hallmarks of cellular senescence. Our findings show that the SARS-CoV-2 spike S1 subunit protein upregulated BACE1 expression in HBMVECs, causing endothelial leakage. In addition, the SARS-CoV-2 spike S1 subunit protein induced p16 and p21 expression, indicating BACE1-mediated cellular senescence, confirmed by ß-Gal staining in HBMVECs. In conclusion, this study demonstrated that BACE1-mediated endothelial cell damage and senescence may be linked to CVD after COVID-19 infection.


Subject(s)
COVID-19 , Cardiovascular Diseases , Amyloid Precursor Protein Secretases/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Brain/metabolism , Cardiovascular Diseases/metabolism , Endothelial Cells/metabolism , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
2.
Int J Mol Sci ; 22(11)2021 May 28.
Article in English | MEDLINE | ID: covidwho-1256561

ABSTRACT

Therapeutic agents with novel mechanisms of action are urgently needed to counter the emergence of drug-resistant infections. Several decades of research into proteases of disease agents have revealed enzymes well suited for target-based drug development. Among them are the three recently validated proteolytic targets: proteasomes of the malarial parasite Plasmodium falciparum, aspartyl proteases of P. falciparum (plasmepsins) and the Sars-CoV-2 viral proteases. Despite some unfulfilled expectations over previous decades, the three reviewed targets clearly demonstrate that selective protease inhibitors provide effective therapeutic solutions for the two most impacting infectious diseases nowadays-malaria and COVID-19.


Subject(s)
COVID-19 Drug Treatment , Drug Development/methods , Malaria/drug therapy , Plasmodium falciparum/drug effects , Protease Inhibitors/pharmacology , Proteasome Endopeptidase Complex/drug effects , SARS-CoV-2/drug effects , Aspartic Acid Endopeptidases/metabolism , COVID-19/enzymology , COVID-19/metabolism , Humans , Malaria/enzymology , Malaria/metabolism , Plasmodium falciparum/pathogenicity , SARS-CoV-2/pathogenicity
3.
Nat Commun ; 11(1): 6319, 2020 12 09.
Article in English | MEDLINE | ID: covidwho-966313

ABSTRACT

The relationship of SARS-CoV-2 pulmonary infection and severity of disease is not fully understood. Here we show analysis of autopsy specimens from 24 patients who succumbed to SARS-CoV-2 infection using a combination of different RNA and protein analytical platforms to characterize inter-patient and intra-patient heterogeneity of pulmonary virus infection. There is a spectrum of high and low virus cases associated with duration of disease. High viral cases have high activation of interferon pathway genes and a predominant M1-like macrophage infiltrate. Low viral cases are more heterogeneous likely reflecting inherent patient differences in the evolution of host response, but there is consistent indication of pulmonary epithelial cell recovery based on napsin A immunohistochemistry and RNA expression of surfactant and mucin genes. Using a digital spatial profiling platform, we find the virus corresponds to distinct spatial expression of interferon response genes demonstrating the intra-pulmonary heterogeneity of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Host Microbial Interactions , Interferons/metabolism , Lung , Adult , Aged , Aged, 80 and over , Aspartic Acid Endopeptidases/metabolism , Autopsy , COVID-19/immunology , COVID-19/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Cells/virology , Female , Humans , Immunity , Immunohistochemistry , In Situ Hybridization , Interferons/genetics , Lung/pathology , Lung/virology , Macrophages/immunology , Male , Middle Aged , Mucins/genetics , Mucins/metabolism , Surface-Active Agents/metabolism , Transcriptome , Viral Load
4.
Immunity ; 54(1): 132-150.e9, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-957143

ABSTRACT

HLA class I (HLA-I) glycoproteins drive immune responses by presenting antigens to cognate CD8+ T cells. This process is often hijacked by tumors and pathogens for immune evasion. Because options for restoring HLA-I antigen presentation are limited, we aimed to identify druggable HLA-I pathway targets. Using iterative genome-wide screens, we uncovered that the cell surface glycosphingolipid (GSL) repertoire determines effective HLA-I antigen presentation. We show that absence of the protease SPPL3 augmented B3GNT5 enzyme activity, resulting in upregulation of surface neolacto-series GSLs. These GSLs sterically impeded antibody and receptor interactions with HLA-I and diminished CD8+ T cell activation. Furthermore, a disturbed SPPL3-B3GNT5 pathway in glioma correlated with decreased patient survival. We show that the immunomodulatory effect could be reversed through GSL synthesis inhibition using clinically approved drugs. Overall, our study identifies a GSL signature that inhibits immune recognition and represents a potential therapeutic target in cancer, infection, and autoimmunity.


Subject(s)
Aspartic Acid Endopeptidases/metabolism , CD8-Positive T-Lymphocytes/immunology , Glioma/immunology , Glycosphingolipids/metabolism , Glycosyltransferases/metabolism , HLA Antigens/metabolism , Histocompatibility Antigens Class I/metabolism , Immunotherapy/methods , Antigen Presentation , Aspartic Acid Endopeptidases/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Glioma/mortality , Glycosphingolipids/immunology , HLA Antigens/immunology , Histocompatibility Antigens Class I/immunology , Humans , Lymphocyte Activation , Signal Transduction , Survival Analysis , Tumor Escape
SELECTION OF CITATIONS
SEARCH DETAIL